miRNA-221 and miRNA-222 synergistically function to promote vascular calcification
نویسندگان
چکیده
Vascular calcification shares many similarities with skeletal mineralisation and involves the phenotypic trans-differentiation of vascular smooth muscle cells (VSMCs) to osteoblastic cells within a calcified environment. Various microRNAs (miRs) are known to regulate cell differentiation; however, their role in mediating VSMC calcification is not fully understood. miR-microarray analysis revealed the significant down-regulation of a range of miRs following nine days in culture, including miR-199b, miR-29a, miR-221, miR-222 and miR-31 (p < 0.05). Subsequent studies investigated the specific role of the miR-221/222 family in VSMC calcification. Real-time quantitative polymerase chain reaction data confirmed the down-regulation of miR-221 (32.4%; p < 0.01) and miR-222 (15.7%; p < 0.05). VSMCs were transfected with mimics of miR-221 and miR-222, individually and in combination. Increased calcium deposition was observed in the combined treatment (two-fold; p < 0.05) but not in individual treatments. Runx2 and Msx2 expression was increased during calcification, but no difference in expression was observed following transfection with miR mimics. Interestingly, miR-221 and miR-222 mimics induced significant changes in ectonucleotide phosphodiesterase 1 (Enpp1) and Pit-1 expression, suggesting that these miRs may modulate VSMC calcification through cellular inorganic phosphate and pyrophosphate levels.
منابع مشابه
Androgen receptor-mediated downregulation of microRNA-221 and -222 in castration-resistant prostate cancer
MicroRNAs (miRNAs) play important roles in cancer formation and progression by suppressing the production of key functional proteins at the post-transcriptional level in a sequence-specific manner. While differential expression of miRNAs is widely observed in cancers including prostate cancer (PCa), how these miRNAs are transcriptionally regulated is largely unknown. MiRNA-221 and miRNA-222 (mi...
متن کاملMicroRNA-297a regulates vascular calcification by targeting fibroblast growth factor 23
Objective(s): Vascular calcification is one the major characteristics in patients with various types of chronic inflammatory disorders. MiRNAs have been shown to be involved in many normal biological functions as well as diseases; however, their role in vascular calcification has not received much attention. Materials and Methods: In the current study, we built a vascular calcification rat mode...
متن کاملmiR-221 and miR-222 promote Schwann cell proliferation and migration by targeting LASS2 after sciatic nerve injury.
microRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the post-transcriptional level. Their roles in regulating the responses of Schwann cells (SCs) to injury stimuli remain unexplored. Here we report dynamic alteration of miRNA expression following rat sciatic nerve injury using microarray analysis. We harvested the proximal nerve stumps and identified 77 miRNAs that sh...
متن کاملIdentification of targets of miRNA-221 and miRNA-222 in fulvestrant-resistant breast cancer
The present study aimed to identify the differentially expressed genes (DEGs) regulated by microRNA (miRNA)-221 and miRNA-222 that are associated with the resistance of breast cancer to fulvestrant. The GSE19777 transcription profile was downloaded from the Gene Expression Omnibus database, and includes data from three samples of antisense miRNA-221-transfected fulvestrant-resistant MCF7-FR bre...
متن کاملMicroRNA deregulation in human thyroid papillary carcinomas.
MicroRNAs (miRNAs) are a class of small non-coding RNAs involved in a wide range of basic processes such as cell proliferation, development, apoptosis and stress response. It has recently been found that they are also abnormally expressed in many types of human cancer. We analyzed the genome-wide miRNA expression profile in human thyroid papillary carcinomas (PTCs) using a microarray (miRNACHIP...
متن کامل